

$u^{{}^{\scriptscriptstyle b}}$	
b UNIVERSITÄT BERN	

Monitoring and outcomes of ART– Mathematical model based on IeDEA Southern Africa

Cindy Aubrière & Janne Estill ISPM, University of Bern on behalf of IeDEA Southern Africa

jestill@ispm.unibe.ch

- > HIV is a major global health burden over 33 million people infected, 22 million of whom in sub-Saharan Africa (WHO, 2009)
- > Antiretroviral therapy (ART) has improved the survival of HIV infected patients tremendously

6 UNIVERSITÄT BERN

b

U

_ _b		
U		
Ь		
UNIVERSIT	ÄT	

In low-income countries, ART is provided with a public health approach – often with very restricted drug regimen options and laboratory monitoring facilities

6 UNIVERSITÄT BERN

n

U

b UNIVERSITÄT BERN

n

U

Background: Routine viral load monitoring

)	
b		

- > Routine viral load monitoring: viral load is measured regularly for all patients
- > Question: How large are benefits of routine viral load monitoring on the:
 - Individual level (e.g. reducing mortality)
 - Population level (e.g. reducing transmission)

Background: IeDEA-SA

- > Over 200,000 patients receiving ART
- > 24 cohorts in six countries
- Two countries (South Africa, Botswana)
 have routine viral load
 measurements as
 part of the national
 ART programme

The mathematical model

7	, t)	
	U		
b			
U		ITÄT	

- Individual based, stochastic simulation model
- Simulates independently a number of patients receiving ART
- > Programmed in MATLAB programming language

(version 7.8.0, MathWorks Inc)

The mathematical model

UNIVERSITÄT BERN

 $\boldsymbol{u}^{\scriptscriptstyle \mathsf{b}}$

Ν	/IATLAB Varial	ble Editor: ans				Pa	ge 7	N	IATLA
1	7.08.2011					1:3	7:11 PM	1	7.08.2
	37	38	39	40	41	42			
1	37	38	39	40	41	42		1	
2	28.8186	52.4573	25.7120	30.8659	40.1345	35.6022		2	
3	2	1	2	1	2	2		3	
4	0	1	0	0	0	0		4	
5	100000	1.7101	100000	100000	100000	100000		5	
6	100000	2.3499	100000	100000	100000	100000		6	
7	0	0	0	0	0	0		7	
8	100000	100000	100000	100000	100000	100000		8	
9	0	0	0	0	0	0		9	
10	100000	100000	100000	100000	100000	100000		10	
11	100000	100000	100000	100000	100000	100000		11	
12	0	0	0	0	0	0		12	
13	100000	100000	100000	100000	100000	100000		13	
14	0	1	0	0	0	0		14	
15	100000	2.3499	100000	100000	100000	100000		15	
16	0	0	0	0	0	0		16	
17	100000	100000	100000	100000	100000	100000		17	
18	100000	100000	100000	100000	100000	100000		18	
19	0	0	0	0	0	0		19	
20	100000	100000	100000	100000	100000	100000		20	
21	100000	100000	100000	100000	100000	100000		21	
22	405	2.4508e+03	405	405	1.9440	405		22	
23	800	880	800	800	3.8400	800		23	
24	1	1	1	1	3	1		24	
25	-1	-1	-1	-1	1	-1		25	
26	5	5	5	5	0.0240	5		26	
27	Inf	Inf	Inf	Inf	Inf	Inf		27	
28	0	0	0	0	0	0		28	
29	1	1	1	1	1	1		29	
30	-9.5282	-6.3431	-4.7648	-2.5235	-6.6663	-8.6103		30	
31	241	241	241	241	5.7840	241		31	
32	241	241	241	241	0	241		32	
33	241	742.8435	241	241	0	241		33	
34	241	1013	241	241	0	241		34	
35	241	1093	241	241	0	241		35	

_							
N	ATLAB Variat	ble Editor: ans				Pa	ge 8
1	17.08.2011 1:37:11 PM						
_	43	44	45	46	47	48	
1	43	44	45	46	47	48	
2	46.4748	38.0425	27.4652	52.1228	39.1830	31.6055	
3	1	2	1	1	2	1	
4	0	0	0	0	0	0	
5	100000	100000	100000	100000	100000	100000	
6	100000	100000	100000	100000	100000	100000	
7	0	0	0	0	0	0	
8	100000	100000	100000	100000	100000	100000	
9	0	0	0	0	0	0	
10	100000	100000	100000	100000	100000	100000	
11	100000	100000	100000	100000	100000	100000	
12	0	0	0	0	0	0	
13	100000	100000	100000	100000	100000	100000	
14	0	0	0	0	0	0	
15	100000	100000	100000	100000	100000	100000	
16	0	0	0	0	0	0	
17	100000	100000	100000	100000	100000	100000	
18	100000	100000	100000	100000	100000	100000	
19	0	0	0	0	0	0	
20	100000	100000	100000	100000	100000	100000	
21	100000	100000	100000	100000	100000	100000	
22	405	405	250.5330	405	405	34.9920	
23	800	800	494.8800	800	800	69.1200	
24	1	1	3	1	1	3	
25	-1	-1	1	-1	-1	1	
26	5	5	3.0930	5	5	0.4320	
27	Inf	Inf	Inf	Inf	Inf	Inf	
28	0	0	0	0	0	0	
29	1	1	1	1	1	1	
30	-3.2492	-6.4336	-3.4694	-7.9412	-8.6466	-4.5408	
31	241	241	241	241	241	104.1120	
32	241	241	241	241	241	0	
33	241	241	241	241	241	0	1
34	241	241	22,4130	241	241	0	
35	241	241	0	241	241	0	

Mortality

Mortality

	∎b	
L	l	
b U N	IVERSITÄT	

- > What could explain this difference?
 - Purely more accurate failure detection?
 - Increased confidence in the failure detection and lower reluctance to switch?
 - Improved adherence and lower failure rates?
 - Background mortality?
- > Apart from background mortality, all other benefits are related to routine viral load monitoring!

Equal failure rates, switching exaclty according to criteria
 No clear difference in mortality

Equal failure rates, but realistic delay to switch included
 Difference in mortality remains moderate

- Doubled hazard of failure if no routine viral load monitoring
 - Mortality already 12% higher after 5 years with CD4 monitoring compared to routine viral load monitoring

Higher background mortality in CD4 monitoring cohort
 Difference in mortality increased substantially

Time spent with failed ART

Transmission

- Individual viral load is a strong predictor of probability of transmission
- Randomised
 clinical trial
 HPTN 052: ART
 reduces
 transmission

Transmission

	Ь	
U	l	
Ь		
UNI\ Beri	/ERSITÄT N	

- Transmission from treated patients currently minimal
- Introduction of "Test and Treat"
- Treatment failure may become a substantial source of transmission
- > Efficient detection of ART failure needed
- > To what extent can routine viral load monitoring prevent new infections?

Transmission: Methods

	∎∎ ^b)	
	U		
b			
E	INIVERS ERN	ITAT	

- Number of new infections in a time period depends also on several other factors: sexual network, risk behaviour, frequency of acts...
- Community viral load (CVL; sum of individual viral loads) has been proven to correlate with the number of new infections

Transmission: Results

b UNIVERSITÄT BERN

b

||,

Discussion

Ь	
U	
CC.	
b	
UNIVERSITÄT	

Limitations:

- > Follow up time very short
- Effect of routine viral load monitoring to adherence cannot be estimated accurately
- > Real number of new infections depends not only on CVL but on a variety of assumptions

General conclusions

b	
U	
Ь	
UNIVERSITÄT BERN	

- > Routine viral load monitoring can reduce mortality and prevent new infections
- > These benefits depend highly on the effect of routine viral load monitoring to adherence
- Our mathematical model is a useful tool to compare different strategies of ART monitoring

Outlook

Ь	
U	

- Our model can be extended to include several other factors (e.g. costs, CD4 trajectories)
- > We will extend the model to a full transmission model to investiage the longterm outcomes of the epidemic
- The model can be implemented for different research questions and further to include coinfections or even model other diseases

Acknowledgements

7	U ^b	
b U B	NIVERSITÄT ERN	

- Olivia Keiser, Matthias Egger and the entire leDEA Southern African team (University of Bern, Switzerland; University of Cape Town, South Africa)
- > Participating sites:
 - Gugulethu and Khayelitsha ART Programmes (South Africa)
 - Center for Infectious Disease Research in Zambia
- > Tim Hallett (Imperial College London, United Kingdom)
- National Institute of Allergy and Infectious Diseases
- Swiss National Science Foundation
- Swiss School of Public Health