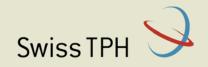


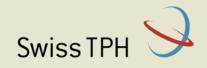
Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse Department of Epidemiology and Public Health Health Systems Research and Dynamical Modelling Unit

Does clustering of vector control interventions improve their effectiveness?


Angelina M Lutambi, Nakul Chitnis, Olivier Briet,

Tom Smith, Melissa Penny

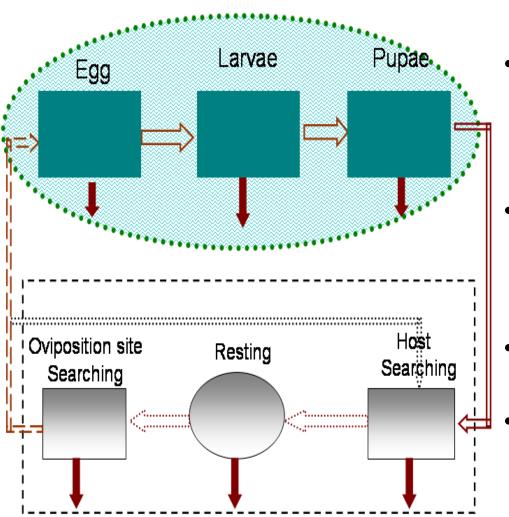
SMIDDY 2012


30th August, 2012

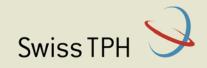
- Mosquitoes transmit several vector borne diseases including malaria
- Various efforts on vector control have been made and coverage of interventions have been scaled up in several countries
- Vector control interventions considered include
 - Insecticide residual spraying (IRS),
 - Insecticide treated nets (ITNs),
 - Spatial repellents, and
 - Larviciding

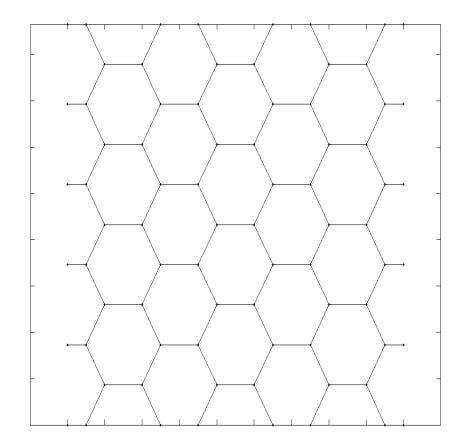
- What role does the spatial arrangement of these interventions play?
- What is the optimal deployment given the resources (coverage) you have?

How?

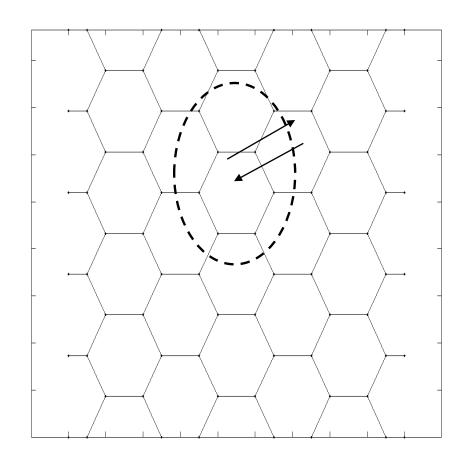


Use modelling to:


- Determine the effects of spatial distribution and clustering of interventions on mosquito populations
- Provide a guide to strategic deployment of interventions for maximum benefits


Mosquito population dynamics

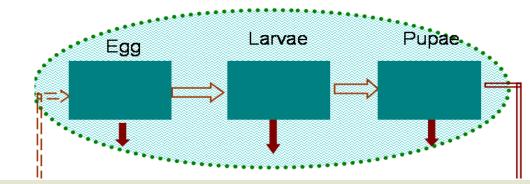

- Main stages: Egg, Larvae, Pupae, Adult.
- We use ODEs to model the population dynamics in each stage.
- Vital dynamics: mortality, density dependent mortality in the larval stage, and birth of new eggs.
- Progression rates between stages.
- Interventions affect progressions


Spatially explicit model – population dynamics

- Allows modelling of any distribution of hosts and breeding sites on the grid.
- Population dynamics replicated in each patch.
- Progression from host seeking stage to the resting stage is only possible if a patch contain hosts.
- Egg oviposition is only possible if a patch contains breeding sites.

Spatially explicit model – dispersal dynamics

- Movement to and from neighbouring patches only.
- Movement is driven by relative availability of hosts and breeding sites
 - only host seeking and breeding site searching stages of the life cycle are allowed to move.
- Periodic boundary conditions.

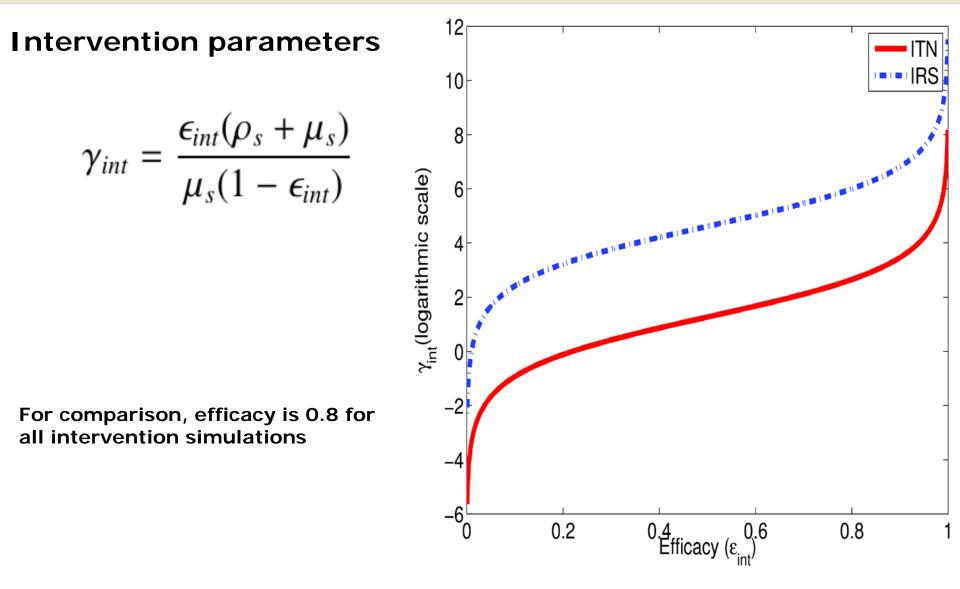

Dispersal model – aquatic stage with interventions

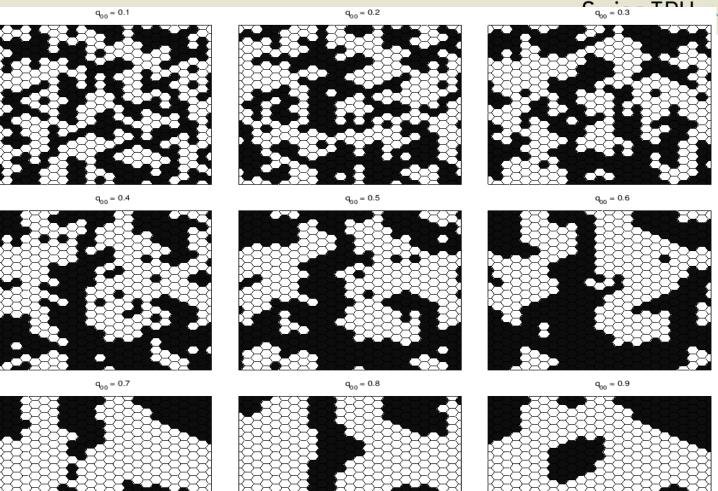
$$\frac{dE_{(i,j)}}{dt} = b_{(i,j)}\rho_{A_o(i,j)}A_{o(i,j)} - \left(\mu_{E(i,j)} + \rho_{E(i,j)}\right)E_{(i,j)}$$

$$\frac{dL_{(i,j)}}{dt} = \rho_{E(i,j)}E_{(i,j)} - \left(\mu_{L_1(i,j)} + \mu_{L_2(i,j)}L_{(i,j)} + \rho_{L(i,j)}\right)L_{(i,j)}$$

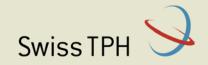
$$\frac{dP_{(i,j)}}{dt} = \left((1 - \epsilon_{LV})\rho_{L(i,j)}L_{(i,j)} - \left(\mu_{P(i,j)} + \rho_{P(i,j)}\right)P_{(i,j)}\right)$$

Intervention = Larvicide Acting on the larval stage



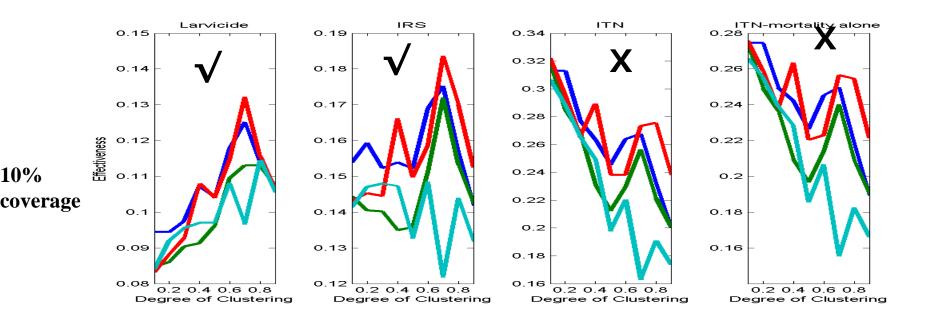

Dispersal model – adult stage with interventions

$$\frac{dA_{h(i,j)}}{dt} = \rho_{P(i,j)}P_{(i,j)} + \psi^{B}_{(i,j)}\rho_{A_{o}(i,j)}A_{o(i,j)} - \left(\mu_{A_{h(i,j)}} + \psi^{H}_{(i,j)}\rho_{A_{h(i,j)}}\right)A_{h(i,j)} - \gamma_{ITN(i,j)}\mu_{A_{h(i,j)}}A_{h(i,j)}A_{h$$

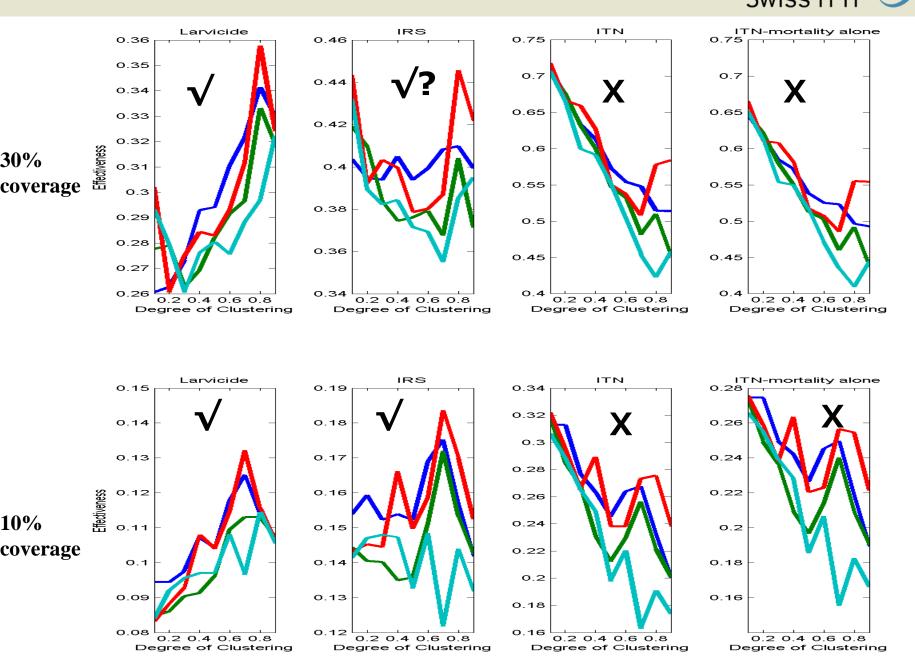

Spatial Clustering of interventions

- An example of 50% coverage, q00 -> degree of clustering, increasing $q00 \rightarrow high$ degree of clustering

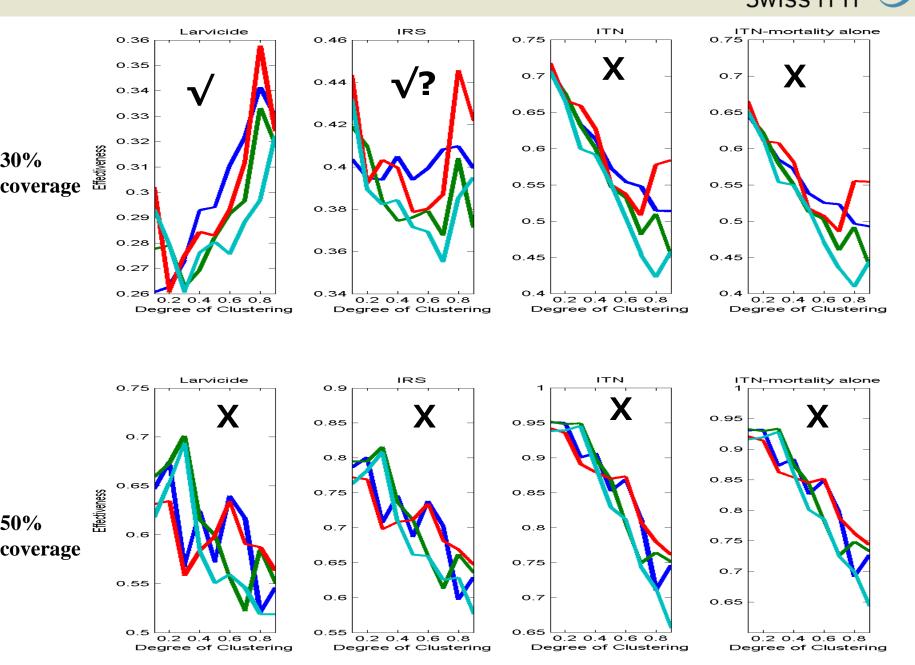
Hiebeler, D., 2000. Populations on fragmented landscapes with spatially structured heterogeneities: Landscape generation and local dispersal. Ecology 81 (6).

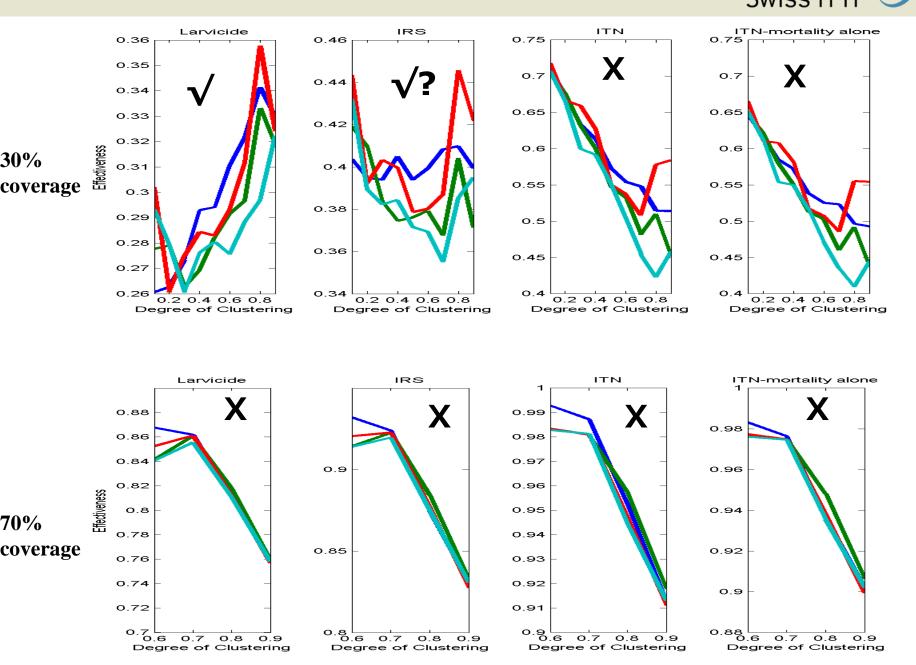


Simulations


- All patches on the grid contain hosts and habitats homogeneous distribution of resources
- We use several generated spatial clusters for distribution of interventions (ranging from no clustering to high clustering)
- Measure of effectiveness of intervention Proportionate reduction of equilibrium population of host seeking mosquitoes

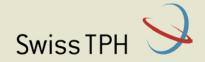
$$ef = 1 - \frac{A_h^{*(\text{int})}}{A_h^{*(\text{noint})}}$$


Results – does clustering improve effectiveness?


Results – does clustering improve effectiveness? Swiss TPH

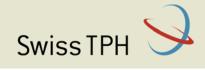
Results – does clustering improve effectiveness? Swiss TPH

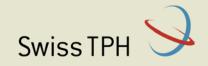
Results – does clustering improve effectiveness? Swiss TPH



Conclusions – optimal deployment

- These results provide evidence that the effectiveness of an intervention can be highly dependent on its spatial distribution
- Under homogeneous distribution of water resources and humans hosts:
- IRS and Larvicide
 - when only low coverage is possible, it is more beneficial to cluster the intervention than to randomly deploy
 - with moderate to high coverage random deployment is optimal
- For ITNs,
 - Random deployment of ITNs to humans is more beneficial than clustering for all level of coverage

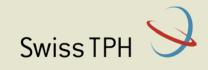

Acknowledgments


Thank you

Thanks to Members of the Malaria Modelling group

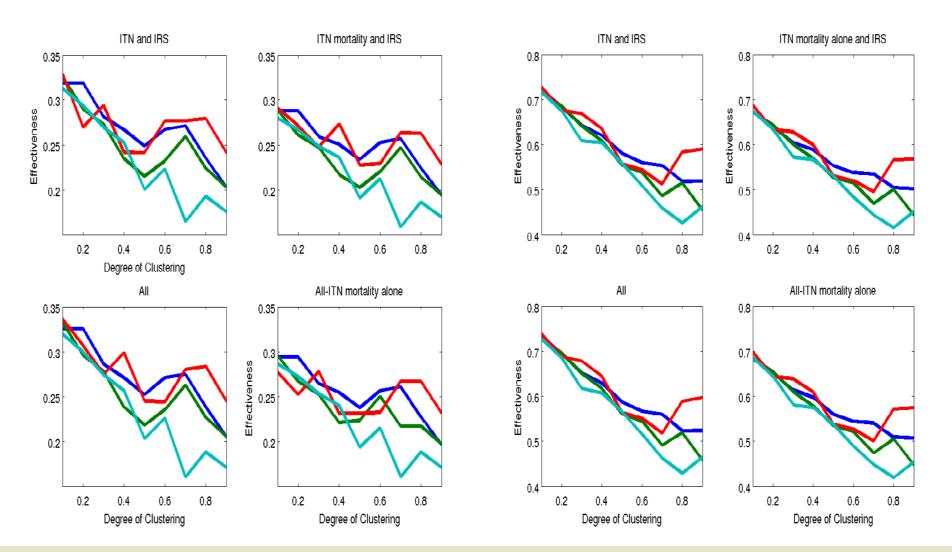
Backup slides

Repellence

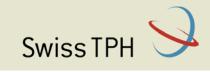

• Dispersal rate is multiplied by

$$\varphi_{i,j} = 1 - p_{i,j}$$

$p_{i,j} \in [0,1]$ is a blocked ability of mosquitoes to enter patch i,j

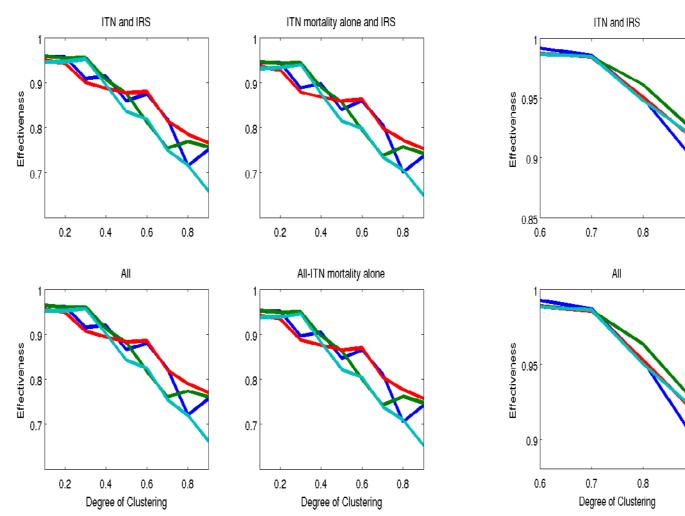

Note: repellence effect is in patches only if intervention is ITN

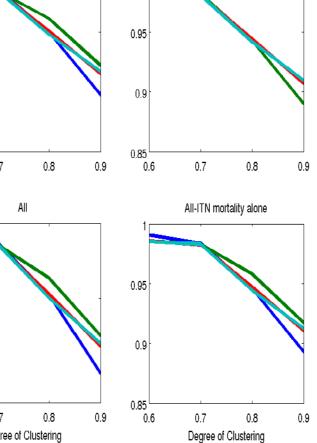
Results

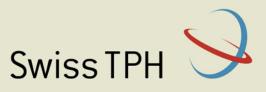


10% coverage

30% coverage

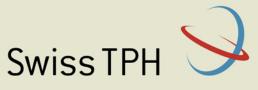

Results




ITN mortality alone and IRS

50% coverage

70% coverage



Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Parameter Values

Parameter	Dimension	Baseline	Range
b		100	50 - 300
ρ_E	day^{-1}	0.50	0.33 - 1.0
ρ_L	day^{-1}	0.14	0.08 - 0.17
ρ_P	day^{-1}	0.50	0.33 - 1.0
μ_E	$days^{-1}$	0.56	0.32 - 0.80
μ_{L_1}	$days^{-1}$	0.44	0.30 - 0.58
μ_{L_2}	days ⁻¹ mosquitoes ⁻¹	0.05	0.0 - 1.0
μ_P	$days^{-1}$	0.37	0.22 - 0.52
ρ_{A_h}	day^{-1}	0.46	0.322 - 0.598
ρ_{A_r}	day^{-1}	0.43	0.30 - 0.56
ρ_{A_o}	day^{-1}	3.0	3.0 - 4.0
μ_{A_h}	$days^{-1}$	0.18	0.125 - 0.233
μ_{A_r}	$days^{-1}$	0.0043	0.0034 - 0.01
μ_{A_o}	$days^{-1}$	0.41	0.41 - 0.56

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse

Parameter description

Parameter	Description	Dimension
b	number of female eggs laid per oviposition mosquitoes	dimensionless
$ ho_E$	egg hatching rate into larvae	per time
ρ_L	rate at which larvae develop into pupae	per time
ρ_P	rate at which pupae develop into adult/emergence rate	per time
ρ_{A_h}	rate at which host seeking mosquitoes enter the resting state	per time
ρ_{A_r}	rate at which resting mosquitoes enter oviposition searching state	per time
ρ_{A_o}	oviposition rate	per time
μ_E	egg mortality rate	per time
μ_{L_1}	larvae mortality rates	per time
μ_{L_2}	larvae density dependent mortality rates	${\rm time^{-1} animals^{-1}}$
μ_P	pupae mortality rates	per time
μ_{A_h}	mortality rates of mosquitoes of searching for hosts	per time
μ_{A_r}	mortality rates of resting mosquitoes	per time
μ_{A_o}	mortality rates of mosquitoes searching oviposition sites	per time