å UNIVERSITÄT BERN

Generalized multistate simulation model "gems" to test the effectiveness of health interventions: development and first applications

Luisa Salazar Vizcaya Nello Blaser

Institute of Social and Preventive Medicine University of Bern

Swiss Meeting for Infectious Disease Dynamics, 2012

Outline

Introduction

- General overview
- Disease progression
- Simulation
- Interventions

2 Applications• Validation

3 Conclusions

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Outline

Introduction

- General overview
- Disease progression
- Simulation
- Interventions

3 Conclusions

 $u^{{}^{\scriptscriptstyle b}}$

UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Outline

Introduction

- General overview
- Disease progression
- Simulation
- Interventions

UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

R package

Package 'gems'

August 16, 2012

Type Package

Title General multistate simulation model

Version 0.8

Date 2012-08-14

Author Luisa Salazar, Nello Blaser, Thomas Gsponer

Maintainer Luisa Salazar <1salazar@ispm.ch>

Depends MASS, methods, msm, mstate

Description

This package allows to simulate and analyze multistate models with general hazard functions.

License GPL-2

R topics documented:

gems-package		÷												-1
generateHazardMatrix														2
generateParameterCovarianceMatrix										 				- 3
generateParameterMatrix										 				- 3
posteriorProbabilities			÷					÷						-4
simulateCohort														- 5
														7

Index

gems-package

General multistate simulation model

Description

Provides functionality to preparation of hazard functions and parameters, simulate from a general multistate model and making predictions. The multistate model is not required to be a Markov model and may take the history of previous events into account. In the basic version, it allows to simulate from transition-specific hazard function, whose parameters are multivariable normally distributed. UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Introduction

Mathematical models

- Progression of diseases
- Evaluation of strategies

Traditional models

- Efficient computational implementations
- Have succeeded in explaining the dynamics of different epidemics
- Not flexible enough to capture details of transition times

UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

▲□▶▲圖▶▲필▶▲필▶ 필필 위۹@

7/33

Introduction

- Mathematical models
 - Progression of diseases
 - Evaluation of strategies
- Traditional models
 - Efficient computational implementations
 - Have succeeded in explaining the dynamics of different epidemics
 - Not flexible enough to capture details of transition times

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

Conclusions

UNIVERSITÄT

GEMS

うせん 正正 ふばやえばやん セキ

8/33

Introduction

- Mathematical models
 - Progression of diseases
 - Evaluation of strategies
- Traditional models
 - Efficient computational implementations
 - Have succeeded in explaining the dynamics of different epidemics
 - Not flexible enough to capture details of transition times

Contents

Introduction General overview Disease progression Simulation Interventions

UNIVERSITÄT

GEMS

Applications Validation

Time-to-event

- Monitors disease progression in a cohort of individual patients
- Takes baseline characteristics and history of previous events into account
- Samples the parameters of transition functions
- Can be combined with a transmission model

UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

- Monitors disease progression in a cohort of individual patients
- Takes baseline characteristics and history of previous events into account
- Samples the parameters of transition functions
- Can be combined with a transmission model

UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

- Monitors disease progression in a cohort of individual patients
- Takes baseline characteristics and history of previous events into account
- Samples the parameters of transition functions
- Can be combined with a transmission model

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

- Monitors disease progression in a cohort of individual patients
- Takes baseline characteristics and history of previous events into account
- Samples the parameters of transition functions
- Can be combined with a transmission model

UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

States

Transition times

h

States

• Transition times

h

Simulations

Simulate transition times

- Choose minimum time and corresponding state
- Continue simulation

Contonto

Introduction General overview Disease progression Simulation

6 UNIVERSITÄT BERN

GEMS

Applications Validation

Simulations

- Simulate transition times
- Choose minimum time and corresponding state
- Continue simulation

6 UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation

Applications Validation

Simulations

- Simulate transition times
- Choose minimum time and corresponding state
- Continue simulation

6 UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation

Application

Validation

Modelling interventions

Impact on event times

 $h_{12}^{intervention}(t) = \lambda \cdot h_{12}(t)$

6 UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

Modelling interventions

Impact on event times

 $h_{12}^{intervention}(t) = \lambda \cdot h_{12}(t)$

UNIVERSITÄT BERN

GEMS

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

Modelling interventions

Impact on states

5 UNIVERSITÄT BERN

h

GEMS

Contents

ntroduction General overview Disease progression Simulation

Interventions

Applications Validation

The model has been validated by reproducing previously obtained results from:

- An individual based model on HIV monitoring strategies (Estill J. et al, 2012)
- A deterministic model on tuberculosis control in South Africa (Bacaer N. et al, 2008)

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

The model has been validated by reproducing previously obtained results from:

- An individual based model on HIV monitoring strategies (Estill J. et al, 2012)
- A deterministic model on tuberculosis control in South Africa (Bacaer N. et al, 2008)

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

TB and HIV epidemics

- Model states and parameters by Bacaer et al.
- The progression of patients was simulated to obtain an artificial cohort

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

States

• HIV -:

- E1: latently infected
- I1: primary disease
- E₁^{*}: recovered
- l_1^* : secondary disease

• HIV+:

- E2: latently infected
- I2: primary disease
- E₂^{*}: recovered
- I2: secondary disease
- D: dead

UNIVERSITÄT

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

6 UNIVERSITÄT BERN

GEMS

R > head(cohort)

		Latent TB	Primary disease	Recovered
Patient	1	0	6.687370	6.723881
Patient	2	0	1.774813	1.829103
Patient	3	0	7.389355	NA
Patient	4	0	1.479336	1.801086
Patient	5	0	NA	NA
		Secondary disease	Dead	
Patient	1	Secondary disease NA	Dead 14.613206	
Patient Patient	1 2	Secondary disease NA 7.14286	Dead 14.613206 11.031754	
Patient Patient Patient	1 2 3	Secondary disease NA 7.14286 NA	Dead 14.613206 11.031754 7.951290	
Patient Patient Patient Patient	1 2 3 4	Secondary disease NA 7.14286 NA NA	Dead 14.613206 11.031754 7.951290 3.292260	

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Probabilities over time

Recovered (HIV+)

Validation

6 8 10 h

BERN

6 UNIVERSITÄT GEMS

Conclusions

- The R package gems for simulating multistate models with general transition-specific hazard functions will be available at CRAN soon
- It is a flexible tool for modelling individual patients to evaluate and plan interventions
- We are working on several applications and extensions

$u^{"}$

UNIVERSITÄT BERN

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Coming soon ...

Ongoing projects include:

- HIV monitoring strategies for children in South Africa
- Early diagnosis and treatment of Hepatitis C to reduce the incidence of advanced liver diseases
- Extension of the model by Bacaer et al. to include age structure
- Tracing strategies to reduce HIV transmission

UNIVERSITÄT

Conclusions

GEMS

Ongoing projects include:

- HIV monitoring strategies for children in South Africa
- Early diagnosis and treatment of Hepatitis C to reduce the incidence of advanced liver diseases
- Extension of the model by Bacaer et al. to include age structure
- Tracing strategies to reduce HIV transmission

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Ongoing projects include:

- HIV monitoring strategies for children in South Africa
- Early diagnosis and treatment of Hepatitis C to reduce the incidence of advanced liver diseases
- Extension of the model by Bacaer et al. to include age structure
- Tracing strategies to reduce HIV transmission

GEMS

Contents

ntroduction General overview Disease progression Simulation Interventions

Applications Validation

Ongoing projects include:

- HIV monitoring strategies for children in South Africa
- Early diagnosis and treatment of Hepatitis C to reduce the incidence of advanced liver diseases
- Extension of the model by Bacaer et al. to include age structure
- Tracing strategies to reduce HIV transmission

GEMS

UNIVERSITÄT

Contents

Introduction General overview Disease progression Simulation Interventions

Applications Validation

å UNIVERSITÄT BERN

- Co-authors: Cindy Zahnd, Janne Estill, Matthias Egger, Thomas Gsponer, Olivia Keiser
- Funding sources: Swiss National Science Foundation, UNITAID, NIH

• Discrete time steps

- Calculate transmission potential
- Simulate number of new infections
- Use multistate model to simulate newly infected patients

GEMS

• Discrete time steps

• Calculate transmission potential

- Simulate number of new infections
- Use multistate model to simulate newly infected patients

UNIVERSITÄT

- Discrete time steps
- Calculate transmission potential
- Simulate number of new infections
- Use multistate model to simulate newly infected patients

UNIVERSITÄT

- Discrete time steps
- Calculate transmission potential
- Simulate number of new infections
- Use multistate model to simulate newly infected patients

TB transmission

<ロ> <同> < 目> < 目> < 目> < 目> のへの

h

6 UNIVERSITÄT BERN

GEMS