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Prologue

Individual heterogeneity

Coutinho et al. (1999): first to explicitly account for individual
heterogeneity in the acquisition of infectious diseases

Farrington et al. (2001): shared gamma frailty model for
bivariate serological data (Measles and Mumps, UK)

Hens et al. (2009): more flexible correlated gamma frailty model
outperforms shared frailty model at the cost of assuming
parametric hazard (Hepatitis A and B, Belgium)

Traditional shared and correlated gamma frailty models based on
the assumption of lifelong immunity after recovery

Aim: integrate mechanistic models and traditional frailty models
to encompass disease dynamics for non-immunizing infections,
comprising potential reinfections
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Frailty models for immunizing infections

Univariate frailty model: notations

Consider univariate current status data (y, a), where a represents
the age of an individual and

Y =

{
0, if seronegative,
1, if seropositive.

Type I interval censored (current status) data

Z denotes individual’s frailty term with respect to single infection

Proportional hazards assumption: λ(a,Z) = Zλ0(a)

λ0(a): age-dependent baseline force of infection

Assumption of endemic equilibrium: unit of time a instead of t
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Frailty models for immunizing infections

Univariate frailty model

Conditional survival function S(a|Z) using proportional hazards:

S(a|Z) = exp
(
−
∫ a

0
λ(u,Z)du

)
= exp

(
−Z
∫ a

0
λ0(u)du

)
Unconditional survival function S(a):

S(a) = L (M0(a)) ,

with M0(a) =
∫ a

0 λ0(u)du and L(.) the Laplace transform of Z
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Frailty models for immunizing infections

Maximum likelihood estimation

Loglikelihood contribution for univariate current status data
(y, a):

ll(y, a|β,ψ) = y log (1− S(a|β,ψ)) + (1− y) log (S(a|β,ψ))

β and ψ: vectors of unknown parameters associated with
baseline force of infection and frailty distribution, respectively
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Beyond the existing frailty models

Extensions

This is then easily extended to the setting of

a shared frailty (Farrington et al. 2001)

a correlated frailty (Hens et al. 2009)

a shared frailty with age-dependent shape parameter
(Farrington et al. 2012, 2013)

Goals:

extending these methods for non-immunizing infections

integrating correlated and age-dependent frailties
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Univariate SIRS frailty model

Previous expressions for S(a|Z) and S(a) not valid for
non-immunizing infections

Formulas derived based on mathematical transmission models

Non-immunizing infection with SIRS transmission dynamics
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Mathematical transmission model

Set of ordinary differential equations (ODEs) in time
homogeneous setting:

dS(a|Z)
da

= −λ(a,Z)S(a|Z) + σ(a)R(a|Z),

dI(a|Z)
da

= λ(a,Z)S(a|Z)− γI(a|Z),

dR(a|Z)
da

= γI(a|Z)− σ(a)R(a|Z).

S, I, R: age-specific proportions of susceptible, infected and
recovered individuals, respectively

λ, σ, γ: force of infection, replenishment rate and recovery rate,
respectively
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Solution of the ODEs

Solving the set of ODEs using S(a|Z) ≈ 1− R(a|Z) yields

S(a|Z) = exp
(
−
∫ a

0
{λ(u,Z) + σ(u)} du

)
+∫ a

0
σ(u) exp

(
−
∫ a

u
{λ(v,Z) + σ(v)} dv

)
du

Integral part in S(a|Z) no closed-form expression

Unconditional survival function S(a) derived under proportional
hazards assumption by taking expectation with respect to Z
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Unconditional survival function

Unconditional survival S(a):

S(a) = L (M0(a)) exp
(
−
∫ a

0
σ(u)du

)
+∫ a

0
σ(u)L (M0(a)−M0(u)) exp

(
−
∫ a

u
σ(v)dv

)
du

Numerical integration techniques required to approximate the
integral part in expression for S(a)



On modelling heterogeneity in the acquisition of infectious diseases

Beyond the existing frailty models

Frailty models for non-immunizing infections

Identifiability

A parametric baseline hazard
To ensure identifiability we need to use parametric baseline hazards
for both infections. We will therefore use a mechanistic model based
on the mass action principle (Farrington et al. 2001).

Social contact hypothesis
We extend this model by using data from social contact surveys
providing an empirical basis for underlying mixing patterns.
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Beyond the existing frailty models

Frailty models for non-immunizing infections

The mass action principle

Short infectious period D:

λ(a,Z) = ND
∫ ∞

0

∫ ∞

0
β(a,Z; a′,Z′)λ(a′,Z′)S(a′|Z′)φ(a′)f (Z′)dZ′da′,

with population size N, augmented contact function
β(a,Z; a′,Z′), and φ(a′) = exp(−

∫ a′

0 µ(u)du), with µ(a):
age-dependent mortality rates

multiplicative decomposition (Farrington et al., 2001)

β(a,Z; a′,Z′) = ZZ′β0(a, a′),

which implies proportional hazards assumption with respect to
the force of infection
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Social contact hypothesis

Furthermore, baseline contact function β0(a, a′) consists of two
components (social contact hypothesis):

β0(a, a′) = q(a, a′|c)c(a, a′),

with q(a, a′|c) proportionality factor and c(a, a′) age-dependent
contact rates
Estimating c(a, a′):

Data on social mixing in Belgium based on POLYMOD survey

Large-scaled European prospective survey between May 2005
and September 2006 on textbfcontact behaviour

Annual contact rates c(a, a′) estimated using bivariate smoothing
approach (Goeyvaerts et al., 2010)
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Solving the mass action principle

Mass action principle does not exhibit a closed-form solution

Turning to discrete age-intervals, a piecewise constant force of
infection can be estimated using an iterative procedure (Kanaan
and Farrington, 2005)

Basic reproduction number R0 is estimated as
(

1 + σ2
f

)
times

the dominant eigenvalue of the function:

β∗0 (a, a
′) =

ND
L

exp
(
−
∫ a

0
µ(u)du

)
β0(a, a′)
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Data: VZV and B19

Bivariate serological survey data on parvovirus B19 (PVB19)
and varicella-zoster virus (VZV) from Belgium anno 2002

PVB19 causes range of diseases, e.g. fifth disease (transmission
by infected respiratory droplets)

Primary infection with VZV results in chickenpox, maybe
reactived resulting in herpes zoster (through direct close contact
with lesions or aerosol contact by saliva and sneezing)

n = 2974 complete serological profiles for both infections
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Data application

Assumptions:

Type I mortality rates: µ(a) = 0 if a ≤ L and µ(a) =∞ otherwise

Absence of maternally derived antibodies, no disease-related
mortality

Constant proportionality factor q(a, a′|c) ≡ q

Gamma frailty distribution with unit mean and variance σ2
if , i =

1,2 for infection 1,2, respectively

Parameters:

N = 9943749, L = 80 years

PVB19: D = 6 days, VZV: D = 7 days

Univariate frailty models

Replenishment rate σ(a) assumed to be constant (SIRS-SIR
models) or dichotomous (SIRSext-SIR models) (cut-off: 35 yrs)
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Results: Univariate gamma frailty models

Bivariate serological data while assuming independence:
product of univariate likelihoods

Model R̂0 R̂ AIC BIC
SIR-SIR q10 0.086 [0.079, 0.094] 5.27 [4.47, 6.22] 1.831 [1.568, 2.142] 4506.27 4530.26

σ2
1f 0.435 [0.316, 0.560]

q20 0.169 [0.159, 0.179] 8.40 [7.89, 8.92] 1.149 [1.137, 1.162]
σ2

2f 3.0e-6 [3.0e-6, 3.0e-6]
ρ12 0.000 -

SIRS-SIR q10 0.071 [0.068, 0.074] 3.03 [2.91, 3.15] 1.059 [1.054, 1.064] 4481.84 4511.82
σ 0.011 [0.008, 0.015]
σ2

1f 3.0e-6 [3.0e-6, 3.0e-6]
q20 0.169 [0.159, 0.179] 8.40 [7.90, 8.93] 1.149 [1.137, 1.162]
σ2

2f 3.0e-6 [3.0e-6, 3.0e-6]
ρ12 0.000 -

SIRSext-SIR q10 0.072 [0.069, 0.074] 3.05 [2.93, 3.17] 1.069 [1.060, 1.077] 4477.00 4512.99
σ1 0.017 [0.012, 0.023]
σ2 0.008 [0.005, 0.012]
σ2

1f 3.0e-6 [3.0e-6, 3.0e-6]
q20 0.169 [0.159, 0.179] 8.40 [7.90, 8.93] 1.149 [1.137, 1.162]
σ2

2f 3.0e-6 [3.0e-6, 3.0e-6]
ρ12 0.000 -
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Beyond the existing frailty models

Frailty models for non-immunizing infections

Results: Bivariate shared gamma frailty models

Bivariate shared frailty model extended as well to encompass
SIRS transmission dynamics

Model R̂0 R̂ AIC BIC
SIR-SIR q10 0.073 [0.069, 0.077] 3.59 [3.27, 3.90] 1.278 [1.188, 1.368] 4537.28 4555.27

q20 0.209 [0.189, 0.232] 12.07 [10.47, 13.74] 1.516 [1.370, 1.664]
σ2

f 0.158 [0.103, 0.210]
ρ12 1.000 -

SIRS-SIR q10 0.072 [0.068, 0.075] 3.17 [2.94, 3.43] 1.106 [1.052, 1.178] 4477.98 4501.97
σ 0.011 [0.007, 0.014]
q20 0.177 [0.162, 0.196] 9.15 [8.07, 10.53] 1.221 [1.140, 1.333]
σ2

f 0.036 [3.5e-6, 0.086]
ρ12 1.000 -

SIRSext-SIR q10 0.072 [0.069, 0.075] 3.13 [2.96, 3.38] 1.093 [1.058, 1.167] 4474.39 4504.38
σ1 0.016 [0.010, 0.022]
σ2 0.008 [0.005, 0.012]
q20 0.173 [0.161, 0.192] 8.82 [8.03, 10.20] 1.189 [1.136, 1.301]
σ2

f 0.021 [3.4e-6, 0.072]
ρ12 1.000 -



On modelling heterogeneity in the acquisition of infectious diseases

Beyond the existing frailty models

Frailty models for non-immunizing infections

Results: Bivariate correlated gamma frailty models

Bivariate correlated frailty model extended as well to encompass
SIRS transmission dynamics

Model R̂0 R̂ AIC BIC
SIR-SIR q10 0.086 [0.079, 0.094] 5.26 [4.47, 6.20] 1.827 [1.567, 2.135] 4505.62 4535.61

q20 0.180 [0.163, 0.200] 9.40 [8.21, 10.92] 1.246 [1.147, 1.376]
σ2

1f 0.433 [0.314, 0.558]
σ2

2f 0.048 [2.7e-6, 0.099]
ρ12 0.332 [0.002, 0.499]

SIRS-SIR q10 0.072 [0.068, 0.075] 3.17 [2.95, 3.43] 1.106 [1.054,1.178] 4481.98 4517.96
σ 0.011 [0.007, 0.014]
q20 0.177 [0.162, 0.197] 9.15 [8.07, 10.54] 1.221 [1.141, 1.337]
σ2

1f 0.036 [4.8e-6, 0.086]
σ2

2f 0.036 [4.8e-6, 0.086]
ρ12 1.000 [0.999, 1.000]

SIRSext-SIR q10 0.071 [0.068, 0.074] 3.08 [2.92, 3.34] 1.077 [1.042, 1.154] 4478.53 4520.51
σ1 0.017 [0.010, 0.022]
σ2 0.009 [0.005, 0.012]
q20 0.173 [0.162, 0.193] 8.82 [8.09, 10.29] 1.188 [1.138, 1.304]
σ2

1f 0.021 [4.8e-6, 0.073]
σ2

2f 0.021 [4.8e-6, 0.073]
ρ12 1.000 [0.999, 1.000]
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Beyond the existing frailty models

Age-dependent correlated frailty models

Age-dependent frailty model
The age-dependent shared gamma frailty (ADSGF)
(Farrington et al., 2012, 2013)

Zi(a) =
k∏

j=1

[1 + (Zij − 1) hij(a)], 0 ≤ hij(a) ≤ 1,

where

hij(a) = exp
(
− (φija)

l
)
, φij ≥ 0.

If l = 2 and Zij = Zj, j = 1, 2, . . . , k are independent gamma
distributed random variables with unit mean and frailty variance
σ2

j , it follows:

σ2
i (a) = Var (Zi(a)) =

k∏
j=1

E
[
(1 + (Zj − 1) hij(a))2

]
−

k∏
j=1

(E [1 + (Zj − 1) hij(a)])2

=
k∏

j=1

(
1 + hij(a)2σ2

j

)
− 1
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Beyond the existing frailty models

Age-dependent correlated frailty models

Age-dependent frailty model

Example I: One component (k = 1) and an infection-invariant
exponential decay rate (φij ≡ φj) (ADSGF-1):

σ2
i (a) = hi1(a)2σ2

1,

where
hi1(a) = exp

(
− (φ1a)2

)
Example II: Two-component multiplicative models using
hi2(a) = 1, ∀a. The decay rates are assumed to differ, denoted by
φ1j and φ2j (ADSGF-2).

σ2
i (a) = hi1(a)2σ2

1
(
1 + σ2

2
)
+ σ2

2

The frailty variance decreases from σ2
1 to σ2

2 as a→∞.



On modelling heterogeneity in the acquisition of infectious diseases

Beyond the existing frailty models

Age-dependent correlated frailty models

Age-dependent frailty model

The piecewise constant shared gamma frailty (PCSGF) model
(Paik, 1994):

Zi(a) =

k∑
j=1

Ij(a)Zij,

where Ij(a) equals one if a ∈
[
a[j], a[j+1]

)
, and zero otherwise.
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Beyond the existing frailty models

Age-dependent correlated frailty models

Age-dependent correlated gamma frailty models

The age-dependent correlated gamma frailty (ADCGF) models
combine the multiplicative model proposed by Farrington et al.
(2012) with the additive decomposition introduced by Yashin
(1995):

Zi(a) = [1 + (Zi1 − 1) hi1(a)] ,

Zi1 = σ2
i (Y

∗
0 + Y∗i ) ,

hi1(a) = exp
(
− (φi1a)l

)
,

where the components Y∗l are independent gamma distributed
random variables.

For identifiability reasons: φ11 = φ21 ≡ φ1 (ADCGF).
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Beyond the existing frailty models

Age-dependent correlated frailty models

Data: Hepatitis A & B

Bivariate serological survey data on hepatitis A (HAV) and
Hepatitis B (HBV) from Belgium anno 1993-1994

The main transmission route for hepatitis A is foodborne or
faeco-oral

For hepatitis B it is sexual or bloodborne

n = 3787 complete serological profiles for both infections

Analyzed in Hens et al. (2009) using a correlated frailty model
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Beyond the existing frailty models

Age-dependent correlated frailty models

Age-dependent correlated gamma frailty models
Gompertz Baseline

SGF CGF PCSGF ADSGF-1 ADSGF-2 ADCGF-1 ADCGF-2
a1 0.012 (0.001) 0.007 (0.001) 0.028 (0.008) 0.073 (0.026) 0.136 (0.091) 0.119 (0.061) 0.127 (0.079)
b1 0.037 (0.005) 0.105 (0.018) 0.010 (0.007) -0.011 (0.006) -0.020 (0.009) -0.018 (0.008) -0.019 (0.009)
a2 0.002 (3E-4) 0.002 (4E-4) 0.002 (4E-4) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001) 0.003 (0.001)
b2 -0.000 (0.007) 0.002 (0.007) -0.002 (0.008) -0.006 (0.007) -0.009 (0.008) -0.006 (0.007) -0.008 (0.008)
σ1 0.723 (0.086) 1.632 (0.028) 3.698 (0.683) 5.771 (0.816) 6.448 (1.014) 6.332 (0.451) 6.362(0.452)
σ2 0.723 (0.086) 1.135 (0.093) 2.429 (0.544) 5.771 (0.816) 6.448 (1.014) 5.649 (0.503) 6.040(0.548)
σ3 - - 0.001 (3E-4) - - - -
σ4 - - 7.962 (6.787) - - - -
φ1 - - - 0.034 (0.005) 0.026 (0.007) 0.027 (0.006) 0.026 (0.007)
φ2 - - - - 0.045 (0.011) - 0.038 (0.020)
ρ 1.000 (-) 0.696 (0.056) 1.000 (-) 1.000 (-) 1.000 (-) 0.931 (0.097) 0.948 (0.063)

−2ll 5687.0 5653.4 5605.3 5617.3 5614.5 5614.6 5614.3
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Conclusion

Conclusion
Non-immunizing infections:

SIRS-SIR frailty models outperform traditional SIR frailty
models

Shared SIRS-SIR gamma frailty models perform best based on
Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC)

Frailty variance seriously overestimated when assuming lifelong
immunity for PVB19 compared to waning immunity assumption

Upper bound for correlation coefficient in correlated gamma
frailty model elevated

Consequently, estimates for R0 and R inflated under SIR
dynamics
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Conclusion

Conclusion
Age-dependent frailties:

Correlated versions seem to outperform shared versions

Overall the shared piecewise-constant age-dependent version
provides the best fit
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Epilogue

Epilogue

Combine social contact hypothesis with age-dependent frailty
approach for non-immunizing infections

Investigate performance of models in context of other infections

Extend SIRS frailty models to analyse serial seroprevalence data

Use frailty-dependent replenishment rates σ(a,Z)

Taking imperfect testing into account using principles of direct
estimation (Hens et al., 2012)
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