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Healthcare-associated infections

Healthcare-associated infections
(eg. MRSA, C. difficile, E. coli) are
a major cause of illness and death
in hospitals worldwide.

It is of great interest to investigate
transmission dynamics, in order to
improve infection control
strategies.

The collection of high-resolution
genetic data is becoming easier and
cheaper.

High–resolution genetic data
potentially offers new insights into
the dynamics of a hospital disease
outbreak.
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Typical Data sets

Typical data sets contain anonymised ward - level information on:

Dates of patient admission
and discharge.

Dates/Outcomes of swab
tests.

Patient location (e.g. in
isolation).

Details of antibiotics
administered.

Typing data.
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High–Resolution Genetic Data (1)

“High–resolution genetic data”: what are they?

individual–level data on the pathogen;

can be taken at single or multiple time
points;

high-dimensional e.g. whole genome
sequences;

proportion of individuals sampled could be
high/low;

becoming far more common due to cost
reduction;
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High–Resolution Genetic Data (2)

“High–resolution genetic data”: what use are they?

Can provide much insight into the dynamics of transmission:

better inference about transmission paths

more reliable estimates of epidemiological quantities (e.g. the
effectiveness of infection control precautions)?;

understand evolution of the pathogen.
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Existing Work/Studies

At least two kinds of approaches exist:

1. Separate genetic and epidemic components:For example,
estimate phylogenetic tree;
given the tree, fit epidemic model.

or
cluster individuals into genetically similar groups;
given the groups, fit multi-type epidemic model.

[See, for example, Volz et al. (2009), Rasmussen et al. (2011), . . .]

2. Combine genetic and epidemic components: For example,

model genetic evolution explicitly;
define model featuring both genetic and epidemic parts.

[See, for example, Ypma et al (2012), Worby (2013), . . .]
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Existing Work/Studies (Pros and Cons)

1. Separate genetic and epidemic components:

+ “Simple” approach;

+ Avoids complex modelling;

− Ignores any relationship between transmission and genetic
information.

2. Combine genetic and epidemic components:
+ “Integrated” approach.

− Is modelling too detailed? [mutation, recombination etc]

− Initial conditions: typical sequence?

+/− Model differences between individuals instead?
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Our Proposed Framework

Develop a more generalized approach to transmission network
reconstruction;

model the distribution of genetic distances observed between
each pair of sampled isolates.

allow multiple independent introductions of the pathogen;

account for within-host diversity;

make no assumptions about the evolutionary dynamics of the
pathogen;

do not consider the phylogenetic relationship between isolates.
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Genetic distance matrix

We define the genetic distance between isolates X1 and X2 to be
the number of SNPs between the isolates, ψ(X1,X2).

Since we are interested in the genetic distance between isolates,
rather than the composition of the genome itself, we define Ψ to
be the matrix of pairwise genetic distances between all isolates.

In other words, that means that each new colonised patient (i , say)
needs to have distance ψ((i , k) to all existing colonised patients k .

We draw ψ(i , k) from a probability distribution according to
“type”: Each new colonised patient is either:

1. An importation (i.e enter ICU already colonised)

2. An acquisition (i.e colonised by another patient)
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Genetic distance matrix (Cont)

1. Importation structure model: assigns each colonized
patient a group where groups contain genetically similar
sequences [groups are not pre-defined].

It is assumed that a patient acquires the same MRSA type as
their source.

Importations may belong to the same group, which is realistic
when there are common strain types circulating in the
community, or a shared external source elsewhere in the
hospital.

Under this model, any pair of isolates taken from patients
within the same transmission chain have the same expected
genetic distance (i.e. follow the same distribution) regardless
of the network distance between the nodes.
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Genetic distance matrix (Cont)

2. Transmission diversity model: assumes that the expected
genetic diversity increases monotonically as sampled
individuals are further apart in the network.

We assume that distances between isolates taken from
individuals in unrelated transmission chains are drawn from a
specified distribution, with an expected distance larger than
within-chain distances.

Based on the idea that closely related individuals are likely to
host genetically similar bacteria, while those who are part of
independent outbreaks are likely to carry genetically diverse
strains.
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Transition Model Dynamics

*P(susceptible patient avoids colonization on day t) = exp{−βCt}
*Screening tests (sensitivity z%, specificity 100%)
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Data augmentation and MCMC

As such, we can write a likelihood function for the swab and
sequencing data X , given the model, which is tractable provided
the time and source of each positive individual is known.

As this information is typically unobserved, we proposed to
augment the parameter space θ with latent data T .

This results in a tractable likelihood, and we may explore the
posterior density using a Markov chain Monte Carlo (MCMC)
algorithm to sample unseen transmission dynamics T and model
parameters θ.

π(θ,T |X ) ∝ π(X |T , θ)π(T |θ)π(θ)
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Simulated patient network

ICU 501: True transmission network
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Estimated patient network

ICU 501: Inferred transmission network
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Assessing network accuracy

We determined the accuracy of estimated networks using the ROC
curve. Increased transmission, higher genetic diversity and lower
sensitivity all resulted in reduced network accuracy.
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WGS samples from Thai ICU 1

ICU 1: Inferred transmission network
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Limitations

Only a small sample of sequences to work with — little
indication of scale of within-host diversity.

Imported strains may be related due to some external source.

Multiple colonisation is not taken into account — it may be
possible for a patient to acquire a second, genetically distinct
colonisation which either replaces, or coexists with, the initial
colonisation.
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Future work

A generalized approach to reconstructing infection
transmission routes using densely sampled genomic data.

Although the model might be quite simplistic, provides a
framework to incorporate additional complexity to the
dynamics of transmission or genetic diversity.

Within-host diversity makes it harder to resolve network.

Mechanism to incorporate reinfection would be beneficial.
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