

Modelling power-law spread of infectious diseases

Sebastian Meyer and Leonhard Held

Financially supported by the Swiss National Science Foundation (project 137919: *Statistical methods for spatio-temporal modelling and prediction of infectious diseases*)

Epidemic Modelling

- Prospective surveillance: outbreak detection (Farrington).
- This talk is concerned with retrospective surveillance:
 - Explain the spread of epidemics through statistical modelling
 - Assess influential factors, e.g., seasonality, climate, concurrent epidemics of related pathogens, contact networks
- Data basis: routine public health surveillance including temporal as well as spatial information
- This talk deals with two types of surveillance data:
 - individual case reports
 - aggregated counts by week and administrative district

Mobility networks determine the spread of epidemics

Source: Max Planck Institute for Dynamics and Self-Organization (http://www.mpg.de/4406928/)

How to quantify spatial interaction between regions or individuals in the absence of network data?

Meyer & Held: Modelling power-law spread of infectious diseases

Power law! Why?

Brockmann et al., 2006:

- Analysed trajectories of 464 670 dollar bills in the USA
- Short-time travel behaviour follows a power law wrt distance

Fig. 1c: Histogram of the distance r traversed within 4 days. Dashed line: $P(r) \propto r^{-1.59}$

 "Starting point for the development of a new class of models for the spread of infectious diseases"

Power law! Why?

Brockmann et al., 2006:

- Analysed trajectories of 464 670 dollar bills in the USA
- Short-time travel behaviour follows a power law wrt distance

Fig. 1c: Histogram of the distance r traversed within 4 days. Dashed line: $P(r) \propto r^{-1.59}$

 "Starting point for the development of a new class of models for the spread of infectious diseases"

Let's do it! We use this finding to improve upon two previously established model frameworks for infectious disease spread.

Meyer & Held: Modelling power-law spread of infectious diseases

Two additive components (Held et al., 2005)

Endemic: seasonality, population, socio-demography, climate, ...
 Epidemic: dependency on previously infected individuals

Space-time point process model for individual case reports

$$\lambda^{*}(t, \mathbf{s}) = \nu_{[t][\mathbf{s}]} \rho_{[t][\mathbf{s}]} + \sum_{j:t_{j} < t} \eta_{j} \cdot \mathbf{g}(t - t_{j}) \cdot f(||\mathbf{s} - \mathbf{s}_{j}||)$$
(Mey and
log($\nu_{[t][\mathbf{s}]}$) = $\beta_{0} + \boldsymbol{\beta}^{\top} \mathbf{z}_{[t][\mathbf{s}]}$, log(η_{j}) = $\gamma_{0} + \boldsymbol{\gamma}^{\top} \mathbf{m}_{j}$

(Meyer, Elias, and Höhle, 2012)

Multivariate time-series model for counts

$$\begin{aligned} Y_{it} | \mathbf{Y}_{\cdot,t-1} &\sim \mathsf{NegBin}(\mu_{it}, \psi) \\ \mu_{it} &= \nu_{it} \, e_{it} + \lambda_{it} \, Y_{i,t-1} + \phi_{it} \, \sum_{j \neq i} w_{ji} \, Y_{j,t-1} \\ \log(\cdot_{it}) &= \beta_0^{(\cdot)} + b_i^{(\cdot)} + \beta^{(\cdot)^\top} \mathbf{z}_{it}^{(\cdot)} \qquad \cdot \in \{\nu, \lambda, \phi\} \end{aligned}$$

(Held and Paul, 2012, and previous work)

Two additive components (Held et al., 2005)

Endemic: seasonality, population, socio-demography, climate, ...
 Epidemic: dependency on previously infected individuals

Space-time point process model for individual case reports

 $\lambda^*(t, \mathbf{s}) = \nu_{[t][\mathbf{s}]} \rho_{[t][\mathbf{s}]} + \sum_{j: t_j < t} \eta_j \cdot g(t - t_j) \cdot \boxed{f(\|\mathbf{s} - \mathbf{s}_j\|)}$ $\log(\nu_{[t][\mathbf{s}]}) = \beta_0 + \beta^\top \mathbf{z}_{[t][\mathbf{s}]}, \quad \log(\eta_j) = \gamma_0 + \gamma^\top \mathbf{m}_j$

(Meyer, Elias, and Höhle, 2012)

Multivariate time-series model for counts

$$Y_{it}|\mathbf{Y}_{\cdot,t-1} \sim \text{NegBin}(\mu_{it},\psi)$$
$$\mu_{it} = \nu_{it} e_{it} + \lambda_{it} Y_{i,t-1} + \phi_{it} \sum_{j \neq i} \overline{w_{ji}} Y_{j,t-1}$$
$$\log(\cdot_{it}) = \beta_0^{(\cdot)} + b_i^{(\cdot)} + \beta^{(\cdot)\top} \mathbf{z}_{it}^{(\cdot)} \qquad \cdot \in \{\nu,\lambda,\phi\}$$

(Held and Paul, 2012, and previous work)

Meyer & Held: Modelling power-law spread of infectious diseases

Two additive components (Held et al., 2005)

Endemic: seasonality, population, socio-demography, climate, ...
 Epidemic: dependency on previously infected individuals

Space-time point process model for individual case reports

$$\begin{split} \lambda^*(t, \mathbf{s}) &= \nu_{[t][\mathbf{s}]} \,\rho_{[t][\mathbf{s}]} + \sum_{j: t_j < t} \eta_j \cdot \mathbf{g}(t - t_j) \cdot \boxed{f(\|\mathbf{s} - \mathbf{s}_j\|)} \\ \log(\nu_{[t][\mathbf{s}]}) &= \beta_0 + \boldsymbol{\beta}^\top \mathbf{z}_{[t][\mathbf{s}]} \,, \qquad \log(\eta_j) = \gamma_0 + \boldsymbol{\gamma}^\top \mathbf{m}_j \end{split}$$
 "twinstim"

Multivariate time-series model for counts

$$Y_{it}|\mathbf{Y}_{\cdot,t-1} \sim \operatorname{NegBin}(\mu_{it},\psi)$$
$$\mu_{it} = \nu_{it} e_{it} + \lambda_{it} Y_{i,t-1} + \phi_{it} \sum_{j \neq i} w_{ji} Y_{j,t-1}$$
 "hhh4"
$$\log(\cdot_{it}) = \beta_0^{(\cdot)} + b_i^{(\cdot)} + \beta^{(\cdot)^{\top}} \mathbf{z}_{it}^{(\cdot)} \quad \cdot \in \{\nu,\lambda,\phi\}$$

Meyer & Held: Modelling power-law spread of infectious diseases

Power-law distance decay in twinstim

 $f(x) = x^{-d}$ not suitable: pole at $x = 0 \Rightarrow$ not integrable.

Power-law distance decay in twinstim

 $f(x) = x^{-d}$ not suitable: pole at $x = 0 \Rightarrow$ not integrable.

"Lagged" power law with uniform short-range dispersal:

$$f_L(x) = egin{cases} 1 & ext{for } x < \sigma, \ \left(rac{x}{\sigma}
ight)^{-d} & ext{otherwise.} \end{cases}$$

Distance x

Power-law distance decay in twinstim

 $f(x) = x^{-d}$ not suitable: pole at $x = 0 \Rightarrow$ not integrable.

Kernel of the density of the shifted Pareto distribution:

$$f(x) = (x + \sigma)^{-d}$$

Distance x

Power-law distance decay in twinstim

 $f(x) = x^{-d}$ not suitable: pole at $x = 0 \Rightarrow$ not integrable.

Kernel of the density of the shifted Pareto distribution:

$$f(x) = (x + \sigma)^{-d}$$

Distance x

- Joint ML-inference for all model parameters
- Numerical cubature of $f_{2D}(\mathbf{s}) = f(||\mathbf{s}||)$ over polygonal domains in likelihood via product-Gauss cubature (Sommariva and Vianello, 2007)

Power-law weights in hhh4

- On which distance measure between regions should the power law act?
 - \longrightarrow Order of neighbourhood $o_{ii}!$

Power-law weights in hhh4

- On which distance measure between regions should the power law act?

 \longrightarrow Order of neighbourhood $o_{ji}!$

 Generalisation of previously used first-order weights w_{ji}:

first-order	power law
$\mathbb{1}(j \sim i)$	o_{ji}^{-d}
	. —

– Normalisation:
$$w_{ji} / \sum_k w_{jk}$$

Neighbourhood order o

Power-law weights in hhh4

- On which distance measure between regions should the power law act?

 \longrightarrow Order of neighbourhood $o_{ji}!$

 Generalisation of previously used first-order weights w_{ji}:

first-order	power law
$\mathbb{1}(j \sim i)$	o_{ji}^{-d}

- Normalisation: $w_{ji} / \sum_k w_{jk}$
- Estimate *d* within the penalised likelihood framework simultaneously with all other model parameters.

Example of individual-level surveillance data: Invasive meningococcal disease in Germany (2002–8)

Meyer & Held: Modelling power-law spread of infectious diseases

Estimated power law

Endemic: seasonality, trend, population density as offset Epidemic: type, age group Decay parameter: $\hat{d} = 2.3$ (95% CI: [1.74, 3.03])

	AIC	Â(B)	Â(C)
Gaussian	18972.04	0.22 [0.17,0.31]	0.10 [0.06,0.15]
Power law	18944.25	0.26 [0.14,0.35]	0.13 [0.06,0.19]

Meyer & Held: Modelling power-law spread of infectious diseases

Example of aggregated surveillance data: Influenza in Southern Germany (2001–8)

Mean yearly incidence per 100 000 inhabitants in the 140 districts of Baden-Württemberg and Bavaria

Estimated power law

- population fractions as endemic offset
- seasonality, region-specific random intercepts in all three components

▷ Predictive performance

- Use strictly proper scoring rules to evaluate consistency of predictive distribution with later observed value: logarithmic score (logS) and ranked probability score (RPS) (Czado et al., 2009)
- Based on one-week-ahead predictions in the last two years
- Calculate mean scores and p-values via permutation tests

	logS	RPS
first order	0.5511	0.4194
power law	0.5448	0.4108
<i>p</i> -value	0.0001	0.19

> Long-term predictive performance

- Simulate the 2008 wave of influenza
- Based on models fitted on 2001–2007
- Initialised by the 18 cases of the last week of 2007
- Run 1000 simulations for each model and evaluate by
 - the final size distribution
 - proper scoring rules on the empirical distribution of the simulations compared to the later reported counts
- Additional benchmark against
 - endemic-only model
 - model without neighbourhood effects
 - model with additional population effect in spatio-temporal component

▷ Long-term predictive performance └ final size

▷ Long-term predictive performance └ time domain

DSS	RPS
27.03	149.77
31.36	112.15
26.46	108.61
16.41	110.2
15.49	111.86

▷ Long-term predictive performance └ space domain

	DSS	RPS
endemic only	7.85	15.39
endemic + AR	7.59	15.04
first order	7.51	15.63
power law	7.36	14.75
power law + pop.	7.24	14.3

▷ Long-term predictive performance └ space-time domain

	DSS	RPS
endemic only	2.91	1.31
endemic + AR	2.58	1.26
first order	2.5	1.26
power law	2.29	1.25
power law $+$ pop.	2.29	1.24

[animation]

Discussion

- Human mobility
 - is an important driver of epidemic spread
 - follows a power law with respect to distance
- Predictive performance improves when using a power law for spatial interaction of cases
- Infectious imports increase with population size (Bartlett, 1957)
- Edge effects:
 - random intercepts account for unobserved heterogeneity
 - incorporate region-specific incoming traffic from abroad

Outlook

- Semiparametric estimate of weight function to confirm power law
- Estimate impact of traffic data on neighbourhood weights w_{ji} (Geilhufe et al., 2013)

Outlook

- Semiparametric estimate of weight function to confirm power law
- Estimate impact of traffic data on neighbourhood weights w_{ji} (Geilhufe et al., 2013)
- Further reading: arXiv:1308.5115
- Further application: all methods are implemented in the open-source R package surveillance for visualisation, modelling and monitoring of epidemic phenomena.

References

- Bartlett, M. S. (1957). Measles periodicity and community size. Journal of the Royal Statistical Society. Series A (Statistics in Society), 120(1):48–70.
- Brockmann, D., Hufnagel, L., and Geisel, T. (2006). The scaling laws of human travel. Nature, 439(7075):462–465.
- Czado, C., Gneiting, T., and Held, L. (2009). Predictive model assessment for count data. Biometrics, 65(4):1254–1261.
- Geilhufe, M., Held, L., Skrøvseth, S. O., Simonsen, G. S., and Godtliebsen, F. (2013). Power law approximations of movement network data for modeling infectious disease spread. *Biometrical Journal*. In press.
- Held, L., Höhle, M., and Hofmann, M. (2005). A statistical framework for the analysis of multivariate infectious disease surveillance counts. *Statistical Modelling*, 5:187–199.
- Held, L. and Paul, M. (2012). Modeling seasonality in space-time infectious disease surveillance data. *Biometrical Journal*, 54(6):824–843.
- Höhle, M., Meyer, S., and Paul, M. (2013). surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena.
- Meyer, S., Elias, J., and Höhle, M. (2012). A space-time conditional intensity model for invasive meningococcal disease occurrence. *Biometrics*, 68(2):607–616.
- Meyer, S. and Held, L. (2013). Modelling power-law spread of infectious diseases. Submitted to Annals of Applied Statistics.
- Sommariva, A. and Vianello, M. (2007). Product Gauss cubature over polygons based on Green's integration formula. *Bit Numerical Mathematics*, 47(2):441–453.