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Epidemic Modelling

– Prospective surveillance: outbreak detection (Farrington).

– This talk is concerned with retrospective surveillance:

– Explain the spread of epidemics through statistical modelling
– Assess influential factors, e.g., seasonality, climate, concurrent

epidemics of related pathogens, contact networks

– Data basis: routine public health surveillance including temporal
as well as spatial information

– This talk deals with two types of surveillance data:

– individual case reports
– aggregated counts by week and administrative district
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Mobility networks determine the spread of epidemics

Source: Max Planck Institute for Dynamics and Self-Organization
(http://www.mpg.de/4406928/)

How to quantify spatial interaction between regions or individuals
in the absence of network data?
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Power law! Why?

Brockmann et al., 2006:

– Analysed trajectories of 464 670 dollar bills in the USA

– Short-time travel behaviour follows a power law wrt distance

Fig. 1c: Histogram of the
distance r traversed within
4 days.
Dashed line: P(r) ∝ r−1.59

– “Starting point for the development of a new class of models for
the spread of infectious diseases”

Let’s do it! We use this finding to improve upon two previously
established model frameworks for infectious disease spread.
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Two additive components (Held et al., 2005)

⊕ Endemic: seasonality, population, socio-demography, climate, . . .
Epidemic: dependency on previously infected individuals

Space-time point process model for individual case reports

λ∗(t, s) = ν[t][s] ρ[t][s] +
∑
j :tj<t

ηj · g(t − tj ) · f (‖s− sj‖)

log(ν[t][s]) = β0 + β>z[t][s] , log(ηj ) = γ0 + γ>mj

(Meyer, Elias,
and Höhle,
2012)

Multivariate time-series model for counts

Yit |Y·,t−1 ∼ NegBin(µit , ψ)

µit = νit eit + λit Yi,t−1 + φit
∑
j 6=i

wjiYj,t−1

log(·it) = β
(·)
0 + b

(·)
i + β(·)>z

(·)
it · ∈ {ν, λ, φ}

(Held and Paul,
2012, and
previous work)

Meyer & Held: Modelling power-law spread of infectious diseases Page 5



ISPM, Division of Biostatistics

Two additive components (Held et al., 2005)

⊕ Endemic: seasonality, population, socio-demography, climate, . . .
Epidemic: dependency on previously infected individuals

Space-time point process model for individual case reports

λ∗(t, s) = ν[t][s] ρ[t][s] +
∑
j :tj<t

ηj · g(t − tj ) · f (‖s− sj‖)

log(ν[t][s]) = β0 + β>z[t][s] , log(ηj ) = γ0 + γ>mj

(Meyer, Elias,
and Höhle,
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Power-law distance decay in twinstim

f (x) = x−d not suitable: pole at x = 0 ⇒ not integrable.

Kernel of the density of the shifted
Pareto distribution:

f (x) = (x + σ)−d
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0.8

1.0

Distance x

f(x
)

σ = 1

d=0.5
d=1
d=1.59
d=3

– Joint ML-inference for all model parameters

– Numerical cubature of f2D(s) = f (‖s‖) over polygonal domains in
likelihood via product-Gauss cubature (Sommariva and Vianello, 2007)
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Power-law weights in hhh4

– On which distance measure between regions
should the power law act?
−→ Order of neighbourhood oji ! 1 321

0

3
1 21

2 2
3

– Generalisation of previously used
first-order weights wji :

first-order power law

1(j ∼ i) o−d
ji

– Normalisation: wji/
∑

k wjk

– Estimate d within the penalised
likelihood framework simultaneously
with all other model parameters.
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Example of individual-level surveillance data:
Invasive meningococcal disease in Germany (2002–8)
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B Estimated power law

0 10 20 30 40 50

Distance x from host [km]

0
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1 ⋅ 10−5

eγ 0
⋅f

(x
)

Gaussian
Power law

Endemic: seasonality, trend,
population density as offset

Epidemic: type, age group

Decay parameter: d̂ = 2.3
(95% CI: [1.74, 3.03])

AIC R̂(B) R̂(C)

Gaussian 18972.04 0.22 [0.17,0.31] 0.10 [0.06,0.15]
Power law 18944.25 0.26 [0.14,0.35] 0.13 [0.06,0.19]
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Example of aggregated surveillance data:
Influenza in Southern Germany (2001–8)
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B Estimated power law
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– population fractions as endemic offset

– seasonality, region-specific random intercepts in all three components
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B Predictive performance

– Use strictly proper scoring rules to evaluate consistency of
predictive distribution with later observed value: logarithmic score
(logS) and ranked probability score (RPS) (Czado et al., 2009)

– Based on one-week-ahead predictions in the last two years

– Calculate mean scores and p-values via permutation tests

logS RPS

first order 0.5511 0.4194
power law 0.5448 0.4168
p-value 0.0001 0.19
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B Long-term predictive performance

– Simulate the 2008 wave of influenza

– Based on models fitted on 2001–2007

– Initialised by the 18 cases of the last week of 2007

– Run 1000 simulations for each model and evaluate by

– the final size distribution
– proper scoring rules on the empirical distribution of the simulations

compared to the later reported counts

– Additional benchmark against

– endemic-only model
– model without neighbourhood effects
– model with additional population effect in spatio-temporal

component
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B Long-term predictive performance
x final size
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B Long-term predictive performance
x time domain
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B Long-term predictive performance
x space domain

observed endemic only endemic + autoregressive

first order power law power law + population

0 4 9 16 25 36 49 64 81 100 121 144 169 196 225
Incidence [per 100000 inhabitants]

DSS RPS

endemic only 7.85 15.39
endemic + AR 7.59 15.04

first order 7.51 15.63
power law 7.36 14.75

power law + pop. 7.24 14.3
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B Long-term predictive performance
x space-time domain

DSS RPS

endemic only 2.91 1.31
endemic + AR 2.58 1.26

first order 2.5 1.26
power law 2.29 1.25

power law + pop. 2.29 1.24

[animation]
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Discussion

– Human mobility

– is an important driver of epidemic spread
– follows a power law with respect to distance

– Predictive performance improves when using a power law for
spatial interaction of cases

– Infectious imports increase with population size (Bartlett, 1957)

– Edge effects:

– random intercepts account for unobserved heterogeneity
– incorporate region-specific incoming traffic from abroad
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Outlook

– Semiparametric estimate of weight function to confirm power law

– Estimate impact of traffic data on neighbourhood weights wji

(Geilhufe et al., 2013)

– Further reading: arXiv:1308.5115

– Further application: all methods are implemented in the

open-source package surveillance for visualisation,
modelling and monitoring of epidemic phenomena.
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